
Lee Griffiths
07843 119 789 lee@lee-griffiths.net

Available for work in Hertfordshire, Cambridgeshire or surrounding areas. Willing to relocate.

http://uk.linkedin.com/in/LeePGriffiths https://bitbucket.org/Poddster http://stackexchange.com/users/23045

Digital version of CV, containing much more detail can be found at http://www.lee-griffiths.net/cv/

Overview

Software developer. 7 years’ experience writing WDDM/DirectX 2D/3D graphics drivers in semiconductor industry
for Imagination Technologies. Left in Aug 2015 for a career break, now looking to get back into work.

Worked on large-scale GPU projects, involving many HW and SW teams, targeting fixed and expensive silicon
fabrication deadlines. Experienced full development life-cycle whilst writing embedded, low-level, real-time code for
drivers and firmware, and writing tools for use by developers. Completely comfortable writing non-driver code:
desktop apps, 3D apps, utility scripts. Targeted various OS (Windows, Linux, custom RTOS) on different form-factors
(simulated GPUs, tablets, phones, desktop).

Can design, code, test and document software to a high standard. Take pride in personal and professional
responsibility. Have a personal emphasis on promoting clear communication between teams to help avoid ambiguity
and tribalism. And also on the testing and documentation of code to help ensure its correctness. Capable of working
on solo projects, in teams, or as part of a 300-person effort with little supervision. Capable of independent action to
get information and work from other teams. Not scared to work on projects that many people rely on. Gained some
experience in leading and supervising junior developers in their work.

Key skills: C, Python, graphics drivers, debugging IEEE 754 floating point (C, GPU shader code)

Professional Experience

Imagination Technologies, Kings Langley, Hertfordshire August 2008 - August 2015

Leading Software Design Engineer
Graduate S.D.E. (Aug 2008 – Aug 2010) S.D.E. (Aug 2010 - Jan 2015) Leading S.D.E. (Jan 2015 - Aug 2015)

Market leading IP (intellectual property) company. Owner of brands: PowerVR, MIPS, PURE, Ensigma. PowerVR GPUs
used by many leading-brand smart devices (e.g. all Apple iPads & iPhones), PS Vita, TVs, Laptops, etc. DirectX driver
shipped on Windows-based laptops and tablets, and helped in validation and verification of all shipping GPUs.

 Worked as a senior member of the WDDM team (~30 people), writing WDDM/DirectX 9, 10, 11 drivers for
Windows XP/Vista/7/8/10. User-land and kernel mode C.
o All levels of the software development life-cycle, notably a driver that started as a 0-file project and was

delivered to customers (Intel, Allwinner) with a full WHQL pass on Windows (Vista, 7, 8.1), complete with
maintenance periods, on Intel x86, x64 and ARM based platforms.

o Mentored new/junior engineers. Helped train, educate and present DirectX topics to SW/HW engineers.
Advised HW teams on DirectX spec requirements and signed-off some hardware specs.

o Helped indirectly support customer by providing technical answers in tickets (IPGear, TeamTrack). Have been
"responsible engineer" for WDDM/DX team when Product Managers are taping-out a core and driving all bugs
to 0, or for when a customer's testing/validation fails on a DirectX test.

 Responsible for design, architecture and implementation of large sections of the DirectX driver codebase:
o Majority of work in user-land DirectX driver dealing with the "shader stack", e.g. shader program compilation,

execution, GPU data/code memory management.
o Other areas of lead responsibility: DirectX 11 tessellation, GPU command stream/packet formation, constant

buffer allocations, code that read “apphints” from windows registry and .ini files (in both user and kernel
drivers), code that dumped shader log files. Supervised DirectCompute implementation.

o Had significant input into design and architecture of other areas of the driver. Worked on every file in the
WDDM/DX driver codebases in a fire-fighting/debugging fashion.

 Worked on many useful software tools that were used in the WDDM team and PowerVR wide. E.g. Python scripts
for: C-codegen, translating between source-control systems.

 Regular contributor to the vital tool “objanal”: a fast GPU simulator and important driver debug tool used by
almost all HW/SW/Sim engineers in PowerVR (~300 people)
o Performance sensitive code due to important validation/test system turnaround times.
o Helped code review all patches for objanal, once a code review system was in place.
o Contributed to design and architecture discussions.
o Objanal written in C. Produced a .dll (or .so) that was driven by various frontends.
o Contributed to frontends: command line (Python), graphical (C#/DirectX/OpenGL).

 Helped innovate the WDDM/DirectX team by introducing more modern and efficient working practices.
o Helped introduce a peer code-review system into the team, also pushed for PowerVR at large.

 Helped implement mandatory code reviews for all WDDM/DirectX code via ReviewBoard.
 Acted as 'back stop' to ensure every single commit to the WDDM/DirectX codebase on ReviewBoard was

reviewed by someone, usually myself.
o Helped introduce, implement and maintain a continuous-integration regression test environment for the

driver. Thousands of small-scale tests that all ran at the touch of a button, rather than manual testing via a few,
very complex games & 3D apps.
 A dll extension to Python, using the Python/C API, for DX10 API. A set of Python scripts and 'shell'

environment, using comtypes and ctypes libraries, for DX9 and DX11 APIs. Allowed 3D test-apps to be
written in Python, rather than in C or C++ using COM/DirectX.

 Wrote hundreds of DirectX 9, 10, 11 3D test apps. Majority in Python, few in C or C++.
 Helped develop & maintain QA/testing tools: an automated, distributed, multi-threaded tool for test

scheduling and execution; test-image comparison and error reporting tools; an email delivery report system,
system configuration parsing scripts. All in Python.

 Maintained report hosting website. Django (earlier PHP) for dynamic content generation.
o Continually pushed for improved working practices at all organisation levels (e.g. code reviews, better source

control, improved documentation, change project organisation etc).
 Debugged/Reverse-engineered DirectX API output of many 3D apps, games & game engines to fix faulty images.

Found and debugged many IEE 754 floating point problems in various forms e.g. generated shader code, HW FPU
designs, and purely software FPU implementations.

 Found, triaged, debugged, proved and reported many hardware bugs in simulated-, prototyped- and live-
hardware designs, all of which would have been very expensive to fix if not found.
o Designed and implemented efficient driver workarounds for any unfixable or "won't fix" HW problems.

 Worked with various build systems for driver and tools. nmake/msbuild/Visual Studio.
 Understood the maths involved in creating 3D and 2d graphics and used this to write driver code and 3D apps.

Helped educate junior team members in terms of related maths problems.

APT group, University of Manchester June 2007 – September 2007

Summer Vacation Student

Started work on the course materials that the APT group would use for a new second-year course module. Work
continued on into third year project. For more details, see UoM final year project (below).

PEVE group, University of Manchester June 2006 – September 2006

Summer Vacation Student

Created a new website for PEVE group to match “new style” template on CS department's webpages (cs.man.ac.uk).

Academic Qualifications

2005 – 2008 University of Manchester,
School of Computer Science

B.Sc. Computer Engineering (Honours), Class 2:1

2002 – 2005 Cardinal Newman College,
Preston

A-Levels in Computing(A), Maths(B), Environmental Science(B),
General Studies (C), Accounting(D)

1997 – 2002 St. Bede's High School, Lytham 11 GCSE grade A-C

School of Computer Science, University of Manchester August 2005 - July 2008

In addition to the usual CS topics (algorithms & data structures, databases, AI, etc) there was a particular focus on:
Micro-controllers, Digital design of hardware (circuits, CPUs and systems on chip); Operating system design;
Programming language theory & compilers

Example of Academic Projects

 In Java:
o Simple multi-threaded servers: e.g. telnet, ftp, a "hotel booking" system.
o Client software to book slots from a server running a booking database.
o FAT12, process scheduler, virtual memory implementations.
o MPEG audio encoding software intended for mobile devices.

 Developed a compiler & interpreter for an artificial, C-like language (lex, yacc, C)
 All of the ARM, PIC and C code from the Third Year Project
 Developed an I2C (I2C) peripheral for an AT91 (ARM7TDMI) in Verilog. Synthesized onto Xilinx Virtex FPGA.
 Developed "Stump": An ARM-like 16-bit RISC processor in VHDL. (Only simulated, too big for FPGAs available

in CS department at the time).
 Full custom CMOS layout for a ripple carry adder (Cadence suite)

Final Year Project

Hand-picked by University staff. Created a hardware platform/system to be used by the CS department for new 2nd
year course. Worked with one other student (only joint project of that year!). Large freedom of design: Single
requirement was that it used two specific boards, one ARM and one PIC based. Asked to design a complete system
and sketch feasible applications that could be run on it, with the course changing the app used each year. Delivered
technical report (~20k words) on the project as final year dissertation. Also produced handover report documenting
the structure and function of the code/system for the course organisers. Gained experience of the full development
life-cycle, taking it from a basic spec to a full working system.

The course apparently used the platform and codebase, with modifications, for a few years with no problems.

Hardware Platform Final Design

Hardware platform with a camera module that could be rotated around two axes. PIC board controlled rotation via
stepper and brushed-DC motors. The ARM board worked in tandem with a VDEC1 video decoding co-processor to
manipulate camera images, and used an FPGA to help accelerate certain image decoding operations. ARM/PIC/VDEC1
all talked over I2C. Working example provided to staff was simple colour space conversion. A theoretical example
application for the platform was motion detection & automated tracking.

Technical Skills used in the project

 Developed a basic RTOS on the PIC for a student’s “client” application to use.
 Developed various drivers for both PIC and ARM: Motor control (stepper, brushed DC), communication (I2C,

RS232 and custom protocol), Character LED, FPGA interface/downloading, basic user-space stack-tracer for
debugging.

 Programmed: PIC18, AT91SAM9 (ARM9), video decoder (VDEC1/ADV7183B), flash EEPROM, Xilinx Spartan 3.
 Developed the custom build process and tool chain for the project & course-module. Mix of Bash scripting, C

programs (Linux) and some ARM assembly.
 Experience with Microchip's MPLAB software for programming & debugging the PIC.
 The project's software was written in C (PIC), PIC assembly, ARM assembly, and tools developed for Linux in

C. The image processing/colour-space conversion running on a Xilinx Spartan FPGA was written in VHDL.

Personal Projects

Super-Sleuth https://bitbucket.org/Poddster/super-sleuth

Prototype for procedurally-generated detective game featuring the "realistic" simulation of people, their emotions
and crimes. (~4k kloc Python). Documentation and design for full game underway.

Programmable Flight Computer for Kerbal Space Program https://bitbucket.org/Poddster/ksp_pfc

Unfinished mod for Kerbal Space Program. Attempt at "full system" computer emulation inside of KSP. CPU
emulation mostly complete, but needs a vigorous re-factoring. Circuit simulation was in research + design stage.
LLVM backend planned, not yet implemented. ~12kloc lines of C#, ~4.5kloc of test programs written in ksp_pfc
assembly.

More projects available on https://bitbucket.org/Poddster

Technical Skills

Programming languages, technical skills, and technology use

Advanced Use C (c89, c99), DirectX 9/10/11, HLSL (shaders)
Everyday Use Python, IEE 754 (C & GPU HW), Drivers, WHQL/WHCK/WLK, concurrent

programming/data access

Frequent Use Assembly (x86, x86-64, ARM, GPU), Direct2D, doxygen, nmake (Microsoft version),
msbuild, CMake, MinGW, MSys, SDL (via both PyGame and C API), C#, C++ (C++98,
C++03)

Infrequent Java, c11, OpenGL 4.5, GLSL 4.5, Bash scripts, gdb, POSIX + Gnu/Linux utilities (grep,
sed, awk, etc), Win32 API, COM, XNA 4.0 (+ MonoGame), HTML 5.0, CSS 3, Event
Tracing for Windows (ETW), MISRA C rules

I used this once to do
something useful and

still vaguely remember
how to use it

Android, DirectX12, Vulkan, OpenCL, Pic18 assembly, Perl, MATLAB, MPLab, Apple's
Metal API, AMD's Mantle API, SystemC, Ruby, Verilog, VHDL, Modern C++ (C++11
C++14), PHP, Oracle SQL & MySQL, LLVM backend + LLVM language ref, Lex, Yacc

Tools use

Advanced Knowledge git, Pix For Windows
Configure/use Mantis bug tracker, ReviewBoard, CVS, SVN, Mercurial (Hg)
Everyday Use Windows, Linux, Visual Studio, WinDBG (kernel + user-mode), Perforce, MKS, Microsoft

Project (Gannt chart), RenderDoc, Serena business mishaps (formally TeamTrack), CA
Clarity PPM, Openproject, Bugzilla, Eclipse, Jenkins, Microsoft connect, Microsoft Driver
Verifier,

Used a Few Times GPUView, PVRTune, Intel VTune, ApiTrace, OllyDbg, Cadence Tools (Schematic & CMOS
Layout editors. NC-Verilog/NCSim & Verilog XL simulators), Mentor Graphics
(Schematic), SoftICE, XPerf, LaTeX

Hardware skills

Micro-controllers All PowerVR GPUs from MBX to Rogue (series 3-7), parts of PowerVR Series 8, some
PowerVR video & display cores, Intel Poulsbo (GMA 500), Intel Atoms, AT91SAM9621
(ARM9 based), AT91M40800 (ARM7), PIC18LF452, Xilinx Virtex & Spartan FPGAs,
Analog Devices ADV7183B (Digilent VDEC1 video decoder chip). Some time with
Arduino and Raspberry Pi.

Peripheral Hardware
& Protocols

PCI bus, I2C, UART, USART, RS232, SPI. Analogue and digital PIOs. Interrupts, Power
Management controllers etc. Motor control, Character LCDs. Watchdog/One-shot
timers, 555 timers, etc.

